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ABSTRACT

This study presents a new method to estimate atmospheric weather noise from coupled models, which is

based on initialized simulations with a CGCM. In this method, the weather noise is estimated by removing the

signal part, as determined from the coupled ensemble mean simulations. The weather noise estimated from

coupled models is compared with that estimated from uncoupled AGCM simulations. The model used in this

study is CFSv2. The initialized simulations start from each April during 1982–2009 paired with four members

and extend for 6 months. To make a clear comparison between weather noise in coupled and uncoupled

simulations, a set of uncoupled AGCM (the atmospheric component of CFSv2) simulations are conducted,

which are forced by the daily mean SSTs from the above initialized CGCM simulations. The comparison

indicates that, over the Asia–Pacific monsoon region where the local air–sea coupling is important, the noise

variances are generally reduced as a result of air–sea coupling, as are the total and signal variances. This result

stands in contrast to the results of previous studies that suggested that the noise variance for coupled and

uncoupled models is the same. It is shown that the previous conclusion is simply an artifact of the assumption

applied in the AGCM-based approach (i.e., the signal is the same between coupled and uncoupled simula-

tions). In addition, the variance difference also exhibits a clear seasonality, with a larger difference over the

monsoon region appearing toward boreal summer. Another set of AGCM experiments forced by the same

SST suggests that the CGCM-based method generally remains valid in estimating weather noise within

2 months of its initial start.

1. Introduction

It was identified around 40 years ago that the low-

frequency ocean response is selectively amplified when

the ocean is forced stochastically by fluxes representing

weather noise (Hasselmann 1976; Frankignoul and

Hasselmann 1977). The phenomenon suggests a mech-

anism explaining low-frequency sea surface tempera-

ture (SST) variability (Sarachik et al. 1996). To explore

what fractions of regional SST variability could be ex-

plained by this mechanism, it is necessary to extract

weather noise surface fluxes from coupled systems ei-

ther in observations or in models. One approach for

this purpose is to use a linear statistical atmospheric

model to remove the SST-related patterns from the

observed or simulated full fields. Kleeman and Moore

(1997) used this approach to estimate the noise com-

ponent of the surface wind stress as a residual. Eckert

and Latif (1997) additionally applied a high-pass filter

to the residual. The approach has been widely applied

in examining the role of the weather noise forcing in El
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Niño–Southern Oscillation (ENSO) irregularity and

predictability by intermediate coupled atmosphere–

ocean models (e.g., Kleeman and Moore 1997; Eckert

and Latif 1997).

Clearly, the above statistical method is far too simple

to represent the complex relationship between SST and

the overlying atmosphere, and, consequently, the de-

rived noise still could be highly correlated with SST.

As a significant advancement, Schneider and Fan

(2007) presented a dynamical method to estimate

weather noise. The method is based on atmospheric

general circulation models (AGCMs), and the weather

noise is determined by removing the forced response as

determined from the uncoupled ensemble. Compared

with the statistical method, the AGCM-based method

has the advantage of determining both linear and

nonlinear responses to SST and also the delayed at-

mospheric response to SST at different time lags. The

method has been used to address important questions

about the effect of weather noise on low-frequency SST

variability, in both a perfect model framework

(Schneider and Fan 2007) and observations (Fan and

Schneider 2012).

In this paper, we present a new conceptual definition

of weather noise. We propose that calculation of

weather noise based on uncoupled forced AGCM sim-

ulations cannot properly account for the atmosphere–

ocean coupling, which necessarily affects the estimation

of both signal and noise in coupled simulations. Amajor

assumption in the AGCM-based approach is that, given

the large heat capacity of the ocean, its response to the

atmospheric forcing is much smaller and slower. In fact,

in all uncoupled AGCM runs, the ocean heat capacity is

assumed to be infinitely large and the prescribed SST

does not respond to the AGCM change at all. Although

this assumption is valid in areas where SST fluctuations

are largely determined by the oceanic dynamics, such as

the eastern tropical Pacific Ocean, it is not valid in areas

where the atmospheric forcing and local air–sea feed-

back have a strong effect on SST. For example, in the

‘‘warm seas’’ like the western Pacific and the Indian

Ocean, SST fluctuations are affected by the atmospheric

fluctuations, which in turn modify the atmospheric sys-

tems that generate them in the first place. This kind of

feedback can be important to produce relatively long-

living and potentially predictable signals in the ocean–

atmosphere system. In such situations, it is conceivable

that a prescribed SST anomaly, without responding to

any feedback, is likely to exaggerate its influence on the

atmosphere. Therefore, by confusing cause and effect,

the uncoupled AGCM runs could result in a bias toward

artificially too high variance in the air–sea fluxes

(Frankignoul 1999).

To alleviate the above disadvantages in the AGCM-

based approach, this study presents a new method for

estimating weather noise in the coupled models. The

new method can be regarded as an extension of the

dynamical method of Schneider and Fan (2007), using

coupled ocean–atmosphere general circulation models

(CGCMs) instead of AGCMs. In this method, signal is

defined as the ensemble average of multiple initialized

CGCM simulations and noise is defined as the departure

from the ensemble mean (i.e., the signal part). By ap-

plying the CGCM-based method, we also address an-

other scientific question; that is, are the statistics of

weather noise the same between the coupled and un-

coupled simulations? Recently, based on the AGCM-

based approach in the perfect model framework, Chen

et al. (2013) claimed that ‘‘the weather-noise variance is

generally not distinguishable between the coupled and

uncoupled simulations,’’ a picture corresponding exactly

to the assumptions in the simple stochastically forced,

linear model of Barsugli and Battisti (1998). On the

other hand, they attributed the variance difference in

the full fields between the coupled and uncoupled sim-

ulations to the ‘‘constructive or destructive interference

between the SST forced response and weather noise in

the coupled model.’’ To make a clear comparison be-

tween coupled and uncoupled simulations and to be able

to repeat the calculations by Schneider and Fan (2007), a

set of uncoupled AGCM (the atmospheric component

of CGCM) simulations are conducted, which are forced

by the daily mean SSTs from the above initialized

CGCM simulations. By comparing the CGCM and

AGCM runs, the effect of coupling on the properties of

weather noise will be examined.

It should be noted that, even though as far as we know

no coupled attempts were made to extract weather noise

from coupled systems, there were studies addressing

weather noise in coupled GCMs. The interactive en-

semble (IE) coupling strategy (Kirtman and Shukla

2002) is one of these examples. The technique is to use

multiple realizations of the atmospheric GCM coupled

to a single realization of the ocean GCM. It is based on

the assumption that the AGCM has unrealistic internal

dynamics noise and that an ensemble average of multi-

ple atmospheric states forced by the same SST will re-

duce the internal atmospheric noise, thereby enhancing

the relative strength of the SST forced signal. Experi-

ments suggested that the IE technique dramatically

improved the simulation of ENSO, the global telecon-

nection associated with ENSO, and the ENSO–

monsoon relationship in a CGCM (Kirtman and Shukla

2002). Furthermore, the IE technique was also the un-

derpinning of studies by Schneider and Fan (2007) and

Fan and Schneider (2012), who explored the role of
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noise in producing surface climate variability by forcing

an IE CGCM with the externally calculated weather

noise fluxes. The new approach to estimate weather

noise using coupled models is consistent with the un-

derlying motivation of IE technique to reduce the arti-

ficially high noise in uncoupled AGCM simulations.

2. Models, experiments, and diagnostics

The coupled model used in this study is the NCEP

Climate Forecast System, version 2 (CFSv2; Saha et al.

2014). In CFSv2, the ocean model is the Geophysical

Fluid Dynamics Laboratory (GFDL) Modular Ocean

Model (MOM), version 4, which is configured for the

global ocean with a horizontal grid of 0.58 3 0.58 pole-
ward of 308S and 308N and a meridional resolution in-

creasing gradually to 0.258 between 108S and 108N. The

vertical coordinate is geopotential height (z-) with 40

levels (27 of them in the upper 400m). The maximum

depth is approximately 4.5 km. The atmospheric model

is a lower-resolution version of the Global Forecast

System (GFS), which has a horizontal resolution at T126

(105-km grid spacing) and 64 vertical levels in a hybrid

sigma–pressure coordinate. The oceanic and atmospheric

components exchange surface momentum, heat, and

freshwater fluxes, as well as SST, every 30min.

In the initialized CFSv2 simulations (referred to as

CGCM; Table 1), the ocean initial conditions (OICs) are

based on the instantaneous states from the European

Centre forMedium-RangeWeather Forecasts (ECMWF)

Ocean Reanalysis System 4 (ORAS4; Balmaseda et al.

2013). CFSv2 integrations start from each April during

1982–2009 and extend for 6 months (i.e., from April to

September). For each OIC, four ensemble members are

generated by changing their atmospheric and land initial

conditions (AICs), which are the instantaneous fields

from 0000 UTC of the first four days in April of each year

in theNCEPClimate Forecast SystemReanalysis (CFSR;

Saha et al. 2010). In a previous study, we compared the

impact of CFSR and ORAS4 ocean initial conditions and

found that using ORAS4 ocean initial conditions in

CFSv2 produces better predictions of SST, especially in

the eastern Pacific (Zhu et al. 2012).

For the application of the AGCM-based noise esti-

mation method (referred to as AGCM; Table 1), the

daily mean SSTs from the above initialized CFSv2 sim-

ulations are used to drive GFS, the identical atmo-

spheric model in CFSv2. In the AGCM run, there are

also four ensemblemembers. For eachmember (e.g., the

second April case), GFS is initialized from the same

atmospheric and land initial conditions as in CGCM and

forced by the daily mean SST from the corresponding

CGCM run. As a result, the SSTs are identical between

CGCM and AGCM on the daily time scale, and their

atmospheric models are also identical. The only differ-

ence is the high-frequency coupling process in CGCM,

where air–sea fluxes exchange every 30min. The two

carefully designed experiments have been used to ex-

plore the role of air–sea coupling in seasonal prediction

of Asia–Pacific summer monsoon rainfall (Zhu and

Shukla 2013) and simulations of the boreal summer in-

traseasonal oscillation over India and the western Pacific

(Shukla and Zhu 2014).

As expected, however, SSTs from the initialized

CGCM simulations diverge with the increase in lead

time (Zhu et al. 2013). To explore its effect on the

weather noise estimation, a third set of experiments

(referred to as AGCM_1sst; Table 1) are further con-

ducted. In AGCM_1sst, all settings are the same as

AGCM, except that AGCM_1sst is driven by the same

SST for all four members (specifically chosen from the

first member of CGCM). By comparing AGCM_1sst

with AGCM, we estimate the ‘‘efficient period’’ when

the SST divergence would not significantly affect the

statistics of estimated weather noise and the CGCM-

based method would remain valid.

In the AGCM-based approach (Schneider and Fan

2007), it was assumed that the signal component was the

same between coupled and uncoupled integrations. To

explore the effect of this assumption on the properties of

estimated weather noise, to be able to repeat the cal-

culations, and to reproduce the previous results, a fourth

set of noise (referred to as CGCM_Sagcm; Table 1) is

estimated, which is defined by removing the AGCM

ensemble mean (i.e., the AGCM signal) from the full

CGCM fields.

TABLE 1. Description of experiments (and noise sets).

Name Descriptions

CGCM Initialized CGCM integrations, four members differing by four AICs

AGCM Forced AGCM integrations, four members by using four SSTs from CGCM paired with four AICs

AGCM_1sst As in AGCM, but using the SST from the first member of CGCM integrations, paired with four AICs

CGCM_Sagcm As in CGCM, but the signal part is defined as AGCM ensemble mean

1 AUGUST 2016 ZHU AND SHUKLA 5677



In this study, all analyses are based on 28 years (1982–

2009) and presented over the Asia–Pacific monsoon

region where the crucial role of local air–sea coupling

has been identified (e.g., Wu and Kirtman 2004, 2007;

Wang et al. 2005; Zhu and Shukla 2013). Our diagnostics

are focused on surface flux variables, such as pre-

cipitation, latent heat flux, and wind stress, because it is

their noise components that are thought to directly drive

low-frequency SST variability (Hasselmann 1976;

Frankignoul and Hasselmann 1977). The monthly mean

data with the annual cycle removed are analyzed. The F

test is used to determine the statistical significance of

variance difference. The corresponding degrees of

freedom (DOF) are 27 in our analyses.

3. Results

First, we compare the variances of full fields in CGCM

with those inAGCM inMay (corresponding to a 1-month

lead time), for which the variances [or standard de-

viations (STDs)] in each ensemble member are calcu-

lated first, and then their average is applied. Figure 1

shows their STD for precipitation, surface latent heat flux

(LHF), net surface shortwave flux (NSWF), and zonal

surface wind stress (Taux). Consistent with previous re-

sults (e.g., Barsugli and Battisti 1998; Chen et al. 2013),

the total variances for all the flux variables are clearly

larger in the uncoupled AGCM than in the CGCM sim-

ulations over the monsoon region. This difference

suggests a basic effect from air–sea coupling (i.e., de-

creasing the energy flux between atmosphere and ocean;

Barsugli and Battisti 1998). In the uncoupled AGCM

runs, SST does not respond to atmospheric fluctuations

but exaggerates its influence on the atmosphere and re-

sults in a bias toward positive feedback (Frankignoul

1999), which increases the variances of fluxes at the air–

sea interface (Barsugli and Battisti 1998).

The above variance difference between AGCM and

CGCM is also evident in the signal component (Fig. 2),

which is defined as their respective ensemble means. In

fact, for all the four flux variables in both CGCM and

AGCM, the variance distributions resemble closely those

of their corresponding full fields, but with reduced am-

plitudes (Fig. 1 vs Fig. 2). For example, in both full and

signal fields of CGCM there are large variances of pre-

cipitation and NSWF on the western coast of India and

the northeastern part of the Bay of Bengal, and at two

slightly shifted regions, LHF and Taux also present large

variances. In AGCM, the two regions are connected by

large variances for all four flux variables in both their full

and signal fields. Large variances also appear in the

tropical western Pacific (TWP), which is a striking dif-

ference relative to CGCM. The TWP difference between

AGCM and CGCM is actually shown in the summer

season as well [e.g., the monsoon rainfall as shown by

Fig. 2 in Zhu and Shukla (2013)], but it shifts slightly

northward because of the seasonal cycle. Therefore,

similar to the total variance (Fig. 1), the variance of signal

component (Fig. 2) is also reduced as a result of air–sea

coupling. We show later that differences in the signal

variance in coupled and uncoupled simulations are an

important factor in this study because the previous esti-

mation of weather noise by Schneider and Fan (2007)

assumed that the signal variance is the same in coupled

and uncoupled simulations.

By removing the above signal component from the full

field, the noise part could be derived as the residual.

Figure 3 shows the STD of noise fields in CGCM and

AGCM and those in CGCM_Sagcm, which are defined

by removing the AGCM ensemble mean following the

procedure applied in the AGCM-based approach

(Schneider and Fan 2007). From Figs. 1, 2, and 3, it is

evident that the variance distributions for all four flux

variables are rather similar among their full, signal, and

noise fields, respectively, but with different amplitudes.

The comparison of the STD amplitudes between CGCM

and AGCM [Figs. 3 (left) vs (right)] indicates that, as in

full and signal fields, the noise variances are also reduced

as a result of air–sea coupling. Further, if comparing

CGCM_Sagcmwith CGCMandAGCM [Figs. 3 (center)

vs (left) and (center) vs (right)], it can be seen that the

noise variance distributions are almost the same between

CGCM_Sagcm andAGCM, but both show clearly larger

amplitudes than CGCM. A good example for such dif-

ference is over the TWP, where large noise variances are

clearly present in both CGCM_Sagcm and AGCM but

absent in CGCM. This reproduces the results of Chen

et al. (2013) that the derived weather noise variance is

generally not distinguishable between CGCM and

AGCM by making their assumption that the signal

component is the same for coupled and uncoupled sim-

ulations. Considering that local air–sea coupling is im-

portant over the Asia–Pacific monsoon region (Fig. 2),

our results suggest that the AGCM-based approach may

not be appropriate to estimate signal and noise.

The above variance difference could be quantitatively

examined by the F test. Figure 4 presents the STD ratio

of the full, signal, and noise fields, with significant dif-

ference highlighted in colors. Figure 4 clearly shows

that, for all the four flux variables, ratio distributions are

similar for all three fields (full, signal, and noise fields).

For instance, their variances derived from full, signal,

and noise flux fields are consistently reduced by air–sea

coupling over the TWP at the 99% confidence level.

Reduced variances also appear in the northern Indian

Ocean, with higher confidence in LHF than other flux
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FIG. 1. Standard deviations of full fields in (left) CGCM and (right) AGCM for (a) precipitation (mmday21),

(b) LHF (Wm22), (c) NSWF (Wm22), and (d) Taux (Nm22). All variables are for May corresponding to 1-month

lead time.
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FIG. 2. As in Fig. 1, but for the signal part.
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variables. In fact, the similarity appears in most flux

variables [see Fig. S1 in the supplemental material for

surface sensible heat flux (SHF), net surface longwave

flux (NLWF), and meridional surface wind stress

(Tauy)]. It is also noted that the SHF variances (Fig. S1b

in the supplemental material) are not reduced as sig-

nificantly as other flux variables, which, however, could

not change the reduction significance of total fluxes (not

shown) because of its minor contributions to total flux in

the region. In general, the quantitative significance test

FIG. 3. Standard deviations of the noise part in (left) CGCM, (center) CGCM_Sagcm, and (right) AGCM for

(a) precipitation (mmday21), (b) LHF (Wm22), (c) NSWF (Wm22), and (d) Taux (Nm22). The STDs are repre-

sented by the average of four STDs from four ensemble members. All variables are for May corresponding to

1-month lead time.
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confirms that the variances of full, signal, and noise flux

fields are simultaneously reduced as a result of air–sea

coupling.

However, if the assumption in the AGCM-based ap-

proach (i.e., the signal component is the same between

CGCM and AGCM) is applied in deriving weather

noise in both CGCM and AGCM simulations, the noise

variance is generally indistinguishable between two

simulations (Fig. 5), reproducing the results of Chen

et al. (2013). It also suggests that the difference in total

FIG. 4. The ratio of the standard deviations between CGCM and AGCM (CGCM/AGCM) for (left) full fields, (center)

the signal part, and (right) the noise part of (a) precipitation, (b) LHF, (c) NSWF, and (d) Taux. All variables are for May

corresponding to 1-month lead time. The STDs are represented by the average of four STDs from four ensemblemembers.

The shaded regions represent where the CGCM variance is significantly larger (red) or smaller (blue) than the AGCM

variance at the 95% (light colors) and 99% (dark colors) confidence levels according to the F test.
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FIG. 5. The ratio of the standard deviations between CGCM_Sagcm and AGCM (CGCM_Sagcm/AGCM)

for the noise parts of (a) precipitation, (b) LHF, (c) NSWF, (d) Taux, (e) SHF, (f) NLWF, and (g) Tauy. All

variables are for May corresponding to 1-month lead time. The STDs are represented by the average of four

STDs from four ensemble members. The shaded regions represent where the CGCM variance is significantly

larger (red) or smaller (blue) than the AGCM variance at the 95% (light colors) and 99% (dark colors)

confidence levels according to the F test.
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variances (Fig. 1) is composed of difference in both

signal variances (Fig. 2) and noise variances (Fig. 3).

However, it should be noted that the CGCM-based

method using initialized simulations also has a limitation

in estimating weather noise because the simulated SST

diverges with the increase in lead time (e.g., Zhu et al.

2013), which could increase the variances in the esti-

mated ‘‘noise’’ component. This limitation should be

taken into account when the estimated weather noise is

used to examine its role in driving low-frequency SST

variability (e.g., Schneider and Fan 2007; Fan and

Schneider 2012). Therefore, it will be practically useful

to define an efficient period when the SST divergence

does not significantly affect the statistics of estimated

weather noise (i.e., the CGCM-based method remains

valid). For this, AGCM_1sst simulations are conducted,

which are forced by the same SST for all members.

Figure 6 and supplemental Figs. S2, S3, and S4 present

the STD ratio between AGCM_1sst and AGCM for

noise LHF, noise precipitation, noise NSWF, and noise

Taux, respectively. It is clear that a significant difference

appears for all four flux variables at lead times larger than

FIG. 6. The ratio of the standard deviations between AGCM_1sst and AGCM (AGCM_1sst/AGCM) for noise

LHF at (a) 0-month lead (April), (b) 1-month lead (May), (c) 2-month lead (June), (d) 3-month lead (July),

(e) 4-month lead (August), and (f) 5-month lead (September). The STDs are represented by the average of four

STDs from four ensemble members. The shaded regions represent where the CGCM variance is significantly

larger (red) or smaller (blue) than the AGCM variance at the 95% (light colors) and 99% (dark colors) con-

fidence levels according to the F test.

5684 JOURNAL OF CL IMATE VOLUME 29



1 month. In particular, at large lead times AGCM has

significantly larger noise variances than AGCM_1sst, as

expected from the large SST divergence that was included

in AGCM simulations. However, at 0- and 1-month lead

times, the noise variances are generally not distinguishable

between AGCM_1sst and AGCM. This suggests that for

this model, the CGCM-based method would remain valid

up to 2 months for estimating weather noise.

Further, the variance difference between AGCM and

CGCM has seasonal dependence. Figure 7 presents the

FIG. 7. The ratio of the standard deviations betweenCGCMandAGCM(CGCM/AGCM) for (left) full fields, (center)

the signal part, and (right) the noise part of (a) precipitation, (b) LHF, (c)NSWF, and (d) Taux.All variables are forApril

corresponding to 0-month lead time. The STDs are represented by the average of four STDs from four ensemble

members. The shaded regions represent where the CGCM variance is significantly larger (red) or smaller (blue) than the

AGCM variance at the 95% (light colors) and 99% (dark colors) confidence levels according to the F test.
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STD ratio in April (the STD ratio for May was already

shown in Fig. 4). The difference between AGCM and

CGCM stays consistent among full, signal, and noise

fields, but the variance reduction due to air–sea coupling

in April is clearly less significant than that in May

(Fig. 4). This seasonal dependence corresponds to the

seasonality in local air–sea interaction (e.g., rainfall–

SST correlation; Wu and Kirtman 2007). For example,

over the TWP, the negative rainfall–SST correlation

increases from boreal spring to boreal summer [see

Fig. 1 in Wu and Kirtman (2007)], and, correspondingly,

the variance reduction also increases fromApril (Fig. 7)

to May (Fig. 4) and further to boreal summer (e.g.,

Fig. 8).

In addition, Fig. 8 also confirms the above noise-

related findings derived from our experiments: 1) air–

sea coupling reduces the noise variance (Fig. 8a vs

Fig. 8c), and 2) the noise variance is generally not dis-

tinguishable between CGCM and AGCM if it is as-

sumed that the signal component is the same between

them (Fig. 8b vs Fig. 8c), a result consistent with Chen

et al. (2013). However, at the long lead times, the noise

variance has a large portion influenced by SST di-

vergence (Fig. 8c vs Fig. 8d).

4. Conclusions and discussion

Schneider and Fan (2007) presented an AGCM-

based method to estimate weather noise. This was a

major advancement over previous statistical methods

(e.g., Kleeman and Moore 1997; Eckert and Latif

1997). As an extension of the dynamical method of

Schneider and Fan (2007), this study presents a new

method to estimate atmospheric weather noise from

coupled models, which is based on initialized simula-

tions with a coupled atmosphere–ocean general cir-

culation model (CGCM). In this method, the weather

noise is estimated by removing the signal determined

from the coupled ensemble. Compared with the

AGCM-based method, the CGCM-based method has

the advantage of realistically accounting for air–sea

coupling and does not make the a priori assumption

that signal variances are the same for coupled and

uncoupled simulations.

FIG. 8. Standard deviations of noise precipitation (mmday21) in (a) CGCM, (b) CGCM_Sagcm, (c) AGCM, and

(d) AGCM_1sst. The STDs are represented by the average of 16 STDs from four ensemble members during four

months (i.e., June–September, corresponding to ;2–5-month lead times).
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The model used in this study is the Climate Forecast

System, version 2 (CFSv2), the current operational cli-

mate prediction model for seasonal-to-interannual pre-

diction at NCEP. The initialized simulations start from

each April during 1982–2009 paired with four members

and extend for 6 months. To further make a clear com-

parison between weather noises in coupled and un-

coupled simulations, a set of uncoupled AGCM (the

atmospheric component of CFSv2) simulations are

conducted, which are forced by the daily mean SSTs

from the above initialized CGCM simulations. The

comparison indicates that, over the Asia–Pacific mon-

soon region where the local air–sea coupling is impor-

tant, the noise variances are generally reduced as a result

of air–sea coupling, similar to the total and signal vari-

ances. The variance difference also exhibits a clear

seasonality, with larger difference over the monsoon

region appearing toward boreal summer. In addition,

since SSTs in the initialized CGCM simulations diverge

with the increase in lead time (e.g., Zhu et al. 2013), it is

practically useful to define an ‘‘efficient period’’ when

the SST divergence does not significantly affect the

statistics of estimated weather noise. Thus, another set

of AGCM experiments forced by the same SST is con-

ducted. It is suggested that the CGCM-based method

generally remains valid in estimating weather noise

within 2 months from its initial start, with little effect

from SST divergence.

In summary, these experiments suggest that air–sea

coupling generally reduces the variances of flux vari-

ables including precipitation, which are simultaneously

accompanied by reduced variances in their signal and

noise components. In other words, the reduced total

variances by air–sea coupling could be due to reductions

in both signal variances and noise variances. In fact, in

the regions where SST variability is primarily driven by

atmospheric forcing, AGCM simulations cannot be re-

alistic and tend to produce a bias toward positive feed-

back and increase the variances of air–sea fluxes

(Frankignoul 1999). This process could happen on var-

ious time scales (e.g., Chen and Qin 2016), and, corre-

spondingly, the same variance changes by air–sea

coupling may appear in both signal and noise fields as

defined on the seasonal time scale. On the other hand,

the relative strength of changes in signal variances ver-

sus those in noise variances reflects predictability

changes due to air–sea coupling, which is beyond the

scope of this study but will be explored in future.

This study is the first step using a coupled model to

quantify what fractions of regional SST variability are

driven by weather noise. In future studies, the derived

noise fluxes from CGCM could be used to force an in-

teractive ensemble CGCM (Kirtman and Shukla 2002),

as conducted by Schneider and Fan (2007) and Fan and

Schneider (2012).
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